workstation

A few nice things from last weeks

  • by

I’ve salvaged two SGI O2 workstations in a very good shape. They were used in Military Research Institute Brno (a state-owned enterprise in Czech Republic). Both have 300-MHz MIPS R5000, 128MB RAM and an extremely noisy 9GB hard drive made by IBM. One of them is full of dust and needs cleaning really bad but the other (which held classified information according to stickers) is clean like new. They were for free.

I was also given two packs full of CDs with SGI marketing materials, sets of hi-res photos of SGI computers for printed magazines and technical presentations for SGI customers. Most of it can be shared with public so I’m thinking about uploading it somewhere.

Sun Ultra 5 Workstation (1998)

  • by

After the introduction of Windows NT and later introduction of Intel Pentium Pro, the PC platform slowly became a big threat for UNIX workstation manufacturers. Most of them disappeared from the market. Some still exist but they don’t make UNIX workstations anymore.

Sun was well aware of the issue and introduced low-cost UNIX workstations based on their own UltraSPARC CPUs. Unlike other models, these were made mostly from off-the-shelf PC components. There are industry standard EDO RAM modules (with ECC) and the frame buffer is in fact an ordinary $40 ATI Rage Pro PCI video chip. All on-board devices communicate over the standard PCI bus and mass storage devices are connected to an IDE controller instead of more common SCSI (at the time).

On the other hand, there is a full-blown UltraSPARC II CPU similar to the ones in Sun’s high-end workstations. There were two configurations available at the beginning. The lower-end one with 270-MHz CPU has 256 KB of external (L2) cache. Its integer performance is on par with similarly clocked Pentium II and the floating point performance is up to 25% higher (comparable with 290-MHz DEC Alpha). The 333-MHz configuration has 2 MB of external cache which can double the performance in certain types of tasks (+80% in SPECfp95).

Let’s put Ultra 5 in the 1998’s workstation perspective. The main target for this machine was “technical computing”. With the price starting below $5.000, Ultra 5 was the easiest way to get a new UNIX workstation. Low-spec SGI O2 workstations cost about $8.000 and their R5000 CPUs were much slower. An R10000-based O2 would be comparable in terms of computational performance. However, such machine was not available under $15.000. To be fair, SGI O2 can handle 3D in hardware (triangle setup, Z-buffer, texturing) and, according to my testing, even the configuration with 180-MHz R5000 (true-color RGB888) is 3-3.5x faster in OpenGL tasks than 270-MHz Ultra 5 (256-color-only mode with RGB332).

Ultra 5 utilizes its on-board ATI Rage Pro chip only for simple 2D acceleration (BitBlt) and the driver made by Sun ignores all video and 3D capabilities of the chip. Solaris doesn’t support the 16-bit color mode (only 8, 24 and 24+8 are supported) which is the only one where ATI’s chip can handle 3D acceleration. Although the chip didn’t shine in image (3D) image quality, its raw performance in professional OpenGL applications was similar to the SGI O2 integrated video (tested under Windows NT). There is no excuse for not using the video acceleration. Rage Pro was pretty good in video (filtered scaling, color conversions,…) and an average mid-end office PC with this chip (on-board) could easily outperform Ultra 5 in MPEG full-screen playbacks. 320×200@30fps video can be played back only in 1:1 mode. If the video is displayed in full-screen, frame rate drops to 1-2 fps.

This is my first experience with Sun workstations (apart from using Sun Ray thin clients at college) and I’m not very impressed. Basic administration is much more difficult than in IRIX or HP-UX (these two have nice GUI/TUI programs for this purpose). The keyboard has useless additional keys and the mouse cursor is refreshed only about 20x per second. The CPU performance was good at the time of introduction but everything else was not competitive in comparison with $4.000 Pentium II PCs. When it comes to multimedia support, even Linux distros from the 1998 were not worse than Solaris.

*) Last photos show that (unlike other UNIX workstations) Ultra 5 cannot handle multiple 8-bit palettes simultaneously. A whole palette is set according to needs of the window that is active, which results in psychedelic color effects. On the contrary, Windows 9x and NT were ready for dealing with single-palette video chips by reserving about 20 colors for GUI. These colors could not be changed if the active application was not in the full-screen mode.

SGI Visual Workstation 320 restoration #1

  • by

SGI 320 is an interesting piece of history – a failed attempt of UNIX workstation manufacturers to dominate the professional PC/Windows market. Czech SGI guys gave me this computer for free a year ago when they moved to a new office building.

Unlike standard computers of the era running Windows, this one is not PC compatible. It supports only Windows NT 4.0 and 2000 and only via a special loader. You cannot run DOS on it. The logic board badly needs to replace all capacitors (some of them are already leaking) and one voltage regulator which tried to desolder itself from its position. On the other side, it still POST without any issue and passes all tests.

Now I have to wait a few weeks for all the ordered parts. This oddity deserves to survive. I’m really curious about the performance achieved by the unified memory architecture when working with analog (AV in) and digital (firewire) video signals and OpenGL.

The OpenGL performance shouldn’t be bad. John Carmack used the SGI 320 workstation when working on Quake 3 Arena…

HP-UX and Common Desktop Environment (CDE)

  • by

The HP-UX installation was successfully finished with a large text over a half of the screen saying “FAILURE!” written in ASCII art. The whole process took about ten hours and after an automatic restart, the system booted up in the graphics environment.

The CDE GUI is not as intuitive as the one on SGI IRIX but I can live with it. I was more surprised that all color schemes (about 20) looked ugly as hell. The guys who were responsible for this were probably on LSD. Otherwise, I cannot understand the color combinations they created.

On the bright side – although the CPU runs only on 100MHz, the overall feeling of speed is better than on 200-MHz SGI O2. I have only a low-end graphics card capable of 1280×1024 in 256 colors (actually it can combine one 256-color palette for an active window and second 256-color palette for the rest), it is very fast and has no problems with refreshing windows while moving.

Btw the system cannot use audio in the CDE until the network is fully configured. It wouldn’t be a true UNIX without such jokes.

HP 9000/C100 Graphics Workstation (1995)

  • by

My C100 is not as nice as the one on Wikipedia, but it’s fully working. The machine was used in a small GIS company as a server for two X terminals (probably HP 700X). It is equipped with 100-MHz PA-7200 CPU, 256 MB of RAM, 2-GB SCSI HDD, two additional 100-Mbit/s network NICs and a single-head version of the HP 8-bit frame-buffer card. The original owners used it with an external SCSI drive for user data and did regular backups using the internal tape drive. They didn’t delete anything from the internal system drive when they stopped using it (the drive has only about 10 megs of free space).

Owners were probably smokers so I had to clean the internals of the machine from the greasy dust. Fortunately, there was no visible corrosion on logic boards. Now it is ready for a fresh installation of the HP-UX operating system including the complete aC++ development environment.

Inside the SGI O2 UNIX Workstations

  • by

SGI O2 was designed as a small low-cost workstation. This is clearly visible on its internal hardware architecture with unified memory shared between the graphics chipset, CPU, and add-on video grabber. I like the smart design of the case. Everything is easily accessible (except for the CD-ROM drive which needed to be fixed). You can replace the mainboard or hard drives quickly and without any tool.

Btw two of the three mainboards are alive so at least two machines will work. Two working boards are equipped with 180-MHz MIPS R5000 (one in a version without L2 cache). These CPUs were the lowest available options.

IBM RT (RISC Technology)

  • by

IBM PC was not intended as a high-performance workstation back in early 80s. It could hardly be so with its slow CPU, limited graphics capability and a single-task operating system. However, IBM had an answer for performance demanding users requiring multi-tasking UNIX workstations. It was called IBM RT (known also as IBM RT PC) and was introduced in 1986.

There is some interesting history behind this computer. IBM had a RISC technology way before others (early 70s) but it required to pass a lot of internal processes and bureaucracy stuff to get it working in a custom chipset – IBM 801 CPU. IBM RAMP was introduced in 1986 and it was a spin-off project of the original CPU architecture. This 32-bit CPU was made of multiple chips on a single board and the computer needed another board to handle floating-point calculations in hardware (which was optional).

The first (6-Mhz) version of the system was quite underpowered in comparison with workstations based on MIPS R2000 RISC CPUs. This was not the only issue on the competitive market with well-established players like Apollo, DEC, HP and Sun. AIX* (IBM’s UNIX implementation) was not 4.2BSD compatible which resulted in limited software availability. IBM didn’t give much support to this product and company salesmen had no reason to push it due to low commissions.

The system used custom 32-bit bus for CPU cards and memory. Other cards like graphics adapters or storage (ST-506, ESDI) and network (token ring, Ethernet) controllers were designed for standard 16-bit AT slots fully compatible with PC line.

There were four graphics adapters available. Two with resolution of 720×512 in monochrome (black & white) or with 16 colors (out of palette of 64 colors) which were combined with 15-inch CRTs. Other two adapters offered 1024×768 (1-bit monochrome) or 1024×1024 with 256 colors out palette of 4096 colors and were combined with 19-inch CRTs (with 60hz refresh rate). Unlike standard PC graphics cards, these supported BitBlt transfers, line draw and image copy/merge to offload graphics operations from main CPU.

IBM RT was used for certain CAD applications and for shopping store control but it was not very successful on the workstation market.

*) AIX stands for Advanced Interactive Executive