vintage computer

DEC Multia Restoration #1

  • by

Multia (1994) was the smallest Alpha-based computer made by DEC. It was intended as a low-cost workstation but never was really successful. One of my colleagues, a former DEC employee, gave me this machine in a non-working state and – being my first and only Alpha-based system – it deserved to be fixed.

I’ve completely disassembled the whole computer and cleaned every single component inside to get rid of dust and ugly mold smell. Minor issues were found and easily fixed. There were some partially disconnected cables which probably caused that the system didn’t want to boot when was found again in storage by the original owner.

Multia was incredibly small even by the office PC standards back then. DEC managed to squeeze a 64-bit Alpha CPU, enough RAM slots, 2-MB 2D graphics accelerator, Ethernet controller, IDE interface, PCI slot and two PCMCIA slots (bottom side) on a small mainboard. The hi-end configurations (like this one) were offered with a small PCI riser containing a SCSI controller chip combined with a 3.5-inch SCSI hard drive filling the last empty space inside the case. As a result, these configurations overheated significantly.

DECpc 325SLC & SimCity 2000

  • by

SimCity 2000 running on DECpc 325SLC (both from 1993) – This 25-MHz 386SL laptop was available with a color passive-matrix screen and thanks to its Western Digital graphics chip (512kB video RAM) it could handle 256 colors in a resolution of 640×480 (required by the game).

Not bad for a laptop that cost only about $2,100 when released.

CASIO PB-700 (1983)

  • by

 It maybe looks like a calculator, but it is a fully-featured ultra-mobile computer from the early 80s. Weighing just 315 grams, It has a custom 8-bit CPU, up to 16kB of RAM, built-in BASIC and display with a resolution of 160×32 pixels (20×4 characters). The machine can be expanded with some sort of a docking station that adds a four-color plotter and tape storage.

Photos of the inside | Short video

Early Apple Macintosh PowerBooks

  • by

PowerBook 100 has a special place in my heart. I had one back in the 1990s and I loved its big trackball, comfortable keyboard and proper palmrest area – features that were not present in typical PC laptops. Other early PowerBooks were not as small and light as the PowerBook 100, but they shared many design decisions with it. I perfectly understand people who bought and used these computers when they were new. On the other side, I cannot agree with those who see early PowerBooks as universally superior machines to PC notebooks. That’s just not true.

From time to time, I see nonsense statements like that PowerBooks were the first laptops with stereo sound, optical drives, docking stations or other features. Not sure at the moment, but I think that you can find some of these statements even on Wikipedia. However, all of these features were previously available in PC laptops.

In fact, the generations of early PowerBooks that came after the first generation were not considered very innovative back then. Just a few examples:

  • Support for gray-scale video modes on internal screens was added at the end of 1992. Until that, it was possible to run only programs that were written to work with the black and white mode. All VGA-equipped PC laptops supported gray scale and could also translate colors into levels of grey in hardware (no OS or program support was required).
  • Unlike with PC laptops, there was no support for features like color LCD screens, PCMCIA expansion cards and microprocessors with built-in power management capabilities in 1992.
  • There was no graphics acceleration in Apple’s video circuits which resulted in significantly slower screen redraw. This started to be a problem when Apple offered PowerBooks with color screens where the graphics core had to process far more data. The first color PowerBooks with competitively fast graphics chips were available after Apple started to use generic PCI solutions from the PC world (mostly Chips & Technologies, later ATI).
  • Many of the PowerBook graphics chips didn’t support more than 256 colors on external screens even in 1994. Lower-end machines didn’t even have a video output for an external screen.

The first color TFT PowerBook – 180c – was released in August, 1993 – almost a year after major PC brands released their first TFT portables. The PowerBook 180c was equipped with a small 8.4-inch 640×480 screen when PC laptops often used 9.5-inch screens and there were some with even 10.5-inch screens (like the famous IBM ThinkPad 700C – December, 1992). That was not the only issue – it lasted only about an hour on one charge because (unlike PC laptops) it didn’t have a 3.3V CPU, advanced power management features and NiMH batteries.

Heat and power consumption was so big issue with Motorola 68040 that Apple had to release 040-based PowerBooks with a version of the CPU that didn’t have a math coprocessor. Thus, programs that used it heavily were twice as fast when running on the previous generation of high-end 030-based PowerBooks. 486DX-based PC laptops could run the same code four times as fast.

The machines on the photos:

(1) Apple PowerBook 100 (1991), 16-MHz 68000, 4MB RAM, 20MB HDD
(2) Toshiba T2200SX (1991), 20-MHz 386SX, 4MB RAM, 60MB HDD
(3) Apple PowerBook 145 (1993), 25-MHz 68030, 8MB RAM, 80MB HDD

SGI High IMPACT Graphics (1995)

  • by

SGI Indigo2 IMPACT systems were the best workstations for game development and other activities involving textured 3D rendering in 1995. My system is equipped with High IMPACT Graphics, which is a two-card solution with a dedicated geometry engine (one million triangles/s), raster engine with two pixel processors (two pixel per cycle, 60-70 textured Mpixels/s), 12MB of pixel memory and a single texture-mapping unit with its own 1MB of texture memory.

The high-end option was called Maximum IMPACT Graphics. It took three slots in the computer and doubled the rasterisation performance by using exactly the same principle that was later used by 3Dfx Voodoo2 SLI (scan line interleaving).

The 3D performance of SGI Indigo2 IMPACT was years ahead of PCs and other workstations. In fact, 3Dfx Voodoo2, the best gaming 3D accelerator for PCs in 1998, had similar performance to High IMPACT graphics but unlike the IMPACT series, it didn’t support windowed rendering, 32-bit color precision and high resolutions.

The last two photos show Indigo2 IMPACT systems during the development of Final Fantasy VII (source: Sony press kit).

GPUbench results – compare the SGI Maximum IMPACT performance with other 3D accelerators of the same era.

Grand Prix Circuit running on Apple PowerBook 100

  • by

The game runs smoothly on the 16-MHz Motorola 68000 and has better music and sound in comparison with the PC version. Unlike other passive-matrix displays of the era, this 640×400 1-bit panel from Sharp is really fast and makes the game quite enjoyable.

A Sound Card David Made 30 Years Ago

  • by

This is a sound card designed and built by David (a friend of mine who does most of hardware repairs here on my tumblr) in the early 90s. He was a 15-16 years old high school student when he created this thing. It’s a custom design with 12-bit DAC, DMA support and connections for mono out and mono in. He was forced to use an 8-bit ISA bus because 16-bit AT prototyping card PCBs were not available in Czechoslovakia stores at the time (not long after the Velvet Revolution). There was also a problem to get necessary parts for stereo output.

The sound card is not compatible with any standard, so he wrote a program to playback wave sounds and created a “driver” for MODPLAY to playback tracker music. His reason to make his own sound card was simple – 8-bit Sound Blasters had worse sound quality and 16-bit sound cards were too expensive for him.

He still has one of the assembled cards, a prototyping board, all technical drawings and a WordPerfect document describing the design and operation of the card.

There is a quick video of the working card: https://www.youtube.com/watch?v=rL8u9aRfaK8

ATI Graphics Solution rev 3 and monochrome ADI DM-14 (1985-6)

My Vienna 286 (1987) has finally got a monochrome MDA monitor so I can put back the original graphics card (ATI Graphic Solution rev 3). This first ATI chip (CW16800-A) has functions necessary to drive CGA and MDA/Hercules modes, so you can connect both types of monitors although the card is very small. In fact, I was thinking that it was something much newer than the rest of the system but that was not true. ATI implemented most of the circuits in a big GAL (Gate Array Logic, maybe that’s why they were called Array Technologies, Inc.) which allowed them to make the card very compact.

I’ve started with MCGA graphics in 1989 and then with SVGA graphics in 1990. I had never had an opportunity to play with Hercules graphics modes, so I was extremely curious. Using high-resolution text-mode applications in an MDA mode (IBM Monochrome Display Adapter) is a pleasure on this long-persistence screen. Especially when you consider that the same experience was possible since day one with IBM 5150 PC in 1981.

Hercules Graphics Adapter (HGC) used almost the same signal timing as MDA and added a graphics mode where each pixel (720×348) could be changed independently. This allowed business applications to use high-resolution monochrome graphics (black/white) and the card became quite popular (ATI was not the only company making HGC clones).

HGC mode is not the best choice for gaming. Although a lot of games supported the HGC mode, they usually used a simple hack with CGA data. These were the typical approaches:

  • Prince of Persia: 320×200 CGA graphics is horizontally stretched to 640 pixels where each two adjacent pixels are used for dithering (4 shades -> 2 shades). There is no vertical expansion used in the game. The developers just put the 200-row graphics in the center of the 348-row screen.
  • Stunts improved the approach used in Prince of Persia. There is always a black row after two standard rows, so the screen is expanded to 300 rows. I’m surprised that it doesn’t look bad at all on the real CRT.
  • F-15 Strike Eagle tries to expand the graphics to the whole screen area. The vertical expansion is done by doubling every second row.
  • Microsoft Flight Simulator 3.0 looks great because it works with vector graphics. Thus, it can use the full HGC resolution. The result is better than with CGA with exception of the 16-color composite CGA output.